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Abstract—In affective computing, breathing has seen lighter use than the heart and EDA channels. Several reasons have contributed
to this, including difficulties in disambiguating affective from speech effects and perceived lack of generalizability. Here we report a
framework that addresses these issues. The cornerstone of the framework is a comprehensive set of physiologically informed features,
comprised of three groups: breathing depth, respiratory time quotient (RTQ), and breathing speed features. The breathing depth
features capture either mental arousal or fear effects. The RTQ features capture speech production. The breathing speed features
capture arousal effects due to emotional influences. The said framework appears to have broad applicability. In the naturalistic Office
Tasks 2019 dataset with speaking sessions, the said features used either in regression or random forest models led to robust
classification of arousal (AUC in [0.75, 0.96]) stemming from three different conditions: a) mental-emotional stressor effected through a
time-pressured knowledge task; b) pure mental stressor effected through a long knowledge task; c) mental-social stressor effected
through a public speech task. In the stylized CASE dataset with silent sessions, the same features and algorithms led to solid
classification of arousal (AUC in [0.71, 0.85]) stemming from scary vs. non-scary movie clips.

Index Terms—Affective computing, breathing, breathing features, tidal volume, respiratory time quotient, breathing rate, arousal, fight
or flight, mental stressor, social stressor, public speech, multinomial logistic regression, random forest, knowledge work, fear
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1 INTRODUCTION

IN its quest to determine arousal and emotional states,
affective computing uses an array of audio, video, and

physiological channels [1]. For the latter, the emphasis is on
peripheral physiology, which includes electrodermal activ-
ity (EDA), heart function, and breathing function. Among
these three peripheral channels, the one that has received
the least research attention is the breathing channel. For
instance, among five well-known multimodal datasets -
DEAP [2], SEED [3], DSdRD [4], AMIGOS [5], and WESAD
[6] - only DEAP and WESAD feature a breathing channel.
It is not entirely clear why this is the case. Irrespective of
the reasons for the research community’s benign neglect,
breathing has some unique advantages with respect to the
other two channels, but also presents distinct challenges.
A key advantage of breathing lies in its natural features,
like depth and speed, which, we posit, can deliver nuanced
arousal and emotion classifications. A key challenge of
breathing lies in the fact that is the channel most affected
by volitional actions, like speaking [7].

Here we put forward an integrated methodology for
selecting and analyzing breathing features in affective com-
puting studies. This methodology fills a gap in the literature,
by addressing the issue of speech influences on breathing
and providing insights into the nature of one’s aroused
state. We show that our feature set can differentiate among
arousals stemming from time pressure, sustained mental
load, and public speaking - three scenarios largely associ-
ated with work in the knowledge economy [7]. As such, our
method stands to greatly benefit knowledge work studies.
Moreover, we demonstrate that our feature set can detect
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arousals stemming from fear responses, in the context of
movie watching [8]. To facilitate broad use of the presented
physiological framework, we make publicly available under
one repository, the relevant code and curated datasets1.

1.1 Relevant Work
The literature relevant to the present research is divided into
two branches - psychophysiology and affective computing.
These two branches ought to be closely linked, informing
one another; in this direction, there is still much room for im-
provement. Our work could be viewed as an effort to bring a
psychophysiological perspective in the affective computing
analysis of breath. Indeed, to appreciate our approach, one
should first understand the nature of the breathing function.
Breathing is controlled by two physiological systems, cater-
ing to the metabolic and behavioral needs of individuals,
respectively [9]. The metabolic breathing control system is
in charge of the body’s basal metabolic needs and is located
in the brainstem. Its mission is to regulate arterial blood gas
through autonomic activation of the respiratory muscles.
Thanks to the metabolic breathing control system, humans
can breathe even when they are asleep or unconscious. In
contradistinction, the behavioral breathing control system
activates the respiratory muscles for needs unrelated to
basal metabolism. Behavioral breathing control is effected
through either actions yielding explicit breathing control
or states that precipitate involuntary breathing influences.
Examples of the former include speech, singing, and yoga,
while examples of the latter include emotions and mental
activity.

Dramatic manifestations of explicit breathing control in-
clude breathing as fast as possible and breath holding for as
long as possible. In adults, fast breathing can reach up to 40
times resting ventilation, while breath hold can last 70 times
the duration of a normal breath [9]. These are impressive

1. https://github.com/UH-CPL/AffectiveBreathing
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demonstrations of the power of behavioral breathing con-
trol. This power, however, is checked by metabolic control,
as the ultimate limit of the breath hold suggests. Park et
al. have recently shed light in another aspect of the conflict
between the metabolic and behavioral control of breathing.
They showed that subjects initiate voluntary actions more
frequently during expiration, while such breathing-reaction
coupling is absent during externally triggered actions [10].
This has implications for speech production; it is also a stun-
ning demonstration of the incursion of metabolic breathing
control into the sphere of free will. Volitional breathing
control was also found to be effective against stress and to
hold promise for mental health improvement [11].

The competition between the metabolic and behavioral
breathing control systems can create significant analyti-
cal problems, which are exemplified in speech. Subjects
sometimes hyperventilate while they speak to accommo-
date parallel metabolic and speech production demands [9].
Hyperventilation - which is characterized by deep and/or
rapid breaths - is not only associated with speech but also
with stress [12]. Hence, the metabolic-behavioral compe-
tition confounds breathing signal characteristics, making
challenging the detection of arousal in speaking subjects.
It leaves open the following question: How much of the
observed hyperventilation is due to speech production and
how much is due to emotions? This is particularly prob-
lematic in the affective analysis of public speakers, who are
often in a state of anxiety. For this reason, researchers who
focused on physiological methods to study public speaking,
resorted to the EDA and heart channels [7]. For example,
Kusserow et al. proposed talk assistants to regulate stressful
hyperarousal and improve the public speech experience
[13]. Their talk assistants detect stress through EDA and
heart sensing, providing personalized feedback conveyed
through the speaker’s on-body system or podium displays.
As an alternative to the physiological measurement ap-
proach, some researchers tried to detect breathing rates from
speech recordings, using cepstrogram matrix as a feature
for classifying breath vs. non-breath speech frames [14].
Other investigators used psychometric methods to study
anxiety in public speaking. For example, Kelsen found that
extraversion, neuroticism, conscientiousness, and openness
explained 10 to 23% of the variance for public speaking
anxiety [15].

For nonspeaking subjects, breathing analysis becomes
easier, as a major confounding factor is out. Reports in the
psychophysiological literature indicate that anxious subjects
in a nonspeaking state exhibit increases in the speed, ampli-
tude, and irregularity of their breathing [16], that is, they
hyperventilate. In affective computing, much of the breath-
ing analysis for nonspeaking subjects has been carried out
in the context of the two dimensional arousal-valence model
of human emotions [17]. This line of inquiry arrived at
results that are in agreement with the psychophysiological
literature, demonstrating that breathing patterns encapsu-
late rich emotional information. For instance, researchers
found that depth and speed of human breathing varies with
emotions; hyperventilation, in the form of deep and rapid
breathing, indicates excitement that may be caused by anxi-
ety, happiness or anger [17]. Moreover, affective computing
investigators used machine learning (ML) methods, such

as sparse auto-encoder and logistic regression [18], to clas-
sify emotions from breathing data. A physiological dataset
that is often used to benchmark emotion classification is
DEAP [2]. A deep learning framework operating on DEAP’s
breathing signals achieved arousal and valence classification
accuracy of 85.89% and 83.72%, respectively [18]. However,
these results are reported in the absence of cross-validation,
without additional important metrics (e.g., F1), and without
open code, thus leaving a number of unanswered questions.

Instead of using breathing as a stand-alone channel,
some researchers combined breathing with other physiolog-
ical variables to feed ML algorithms for the determination
of arousal and valence levels. Wu et al. fed a support vector
machine with skin conductance, breathing, electrocardio-
gram (ECG), and electroencephalogram (EEG) responses to
classify arousal into three levels: low, optimal, high [19].
Valenza et al. used non-linearly extracted features from
skin conductance, breathing, and ECG to classify valence
and arousal at multiple levels [20]. A strong motivation be-
hind the efforts to determine arousal through physiological
variables is the desire to provide biofeedback to subjects.
Biofeedback aims to help subjects develop self-awareness of
stressful situations and improve their coping styles [21].

In addition to the influence of emotions on breathing,
mental activity has also been shown to significantly affect
breathing patterns. In the psychophysiological literature,
Asmussen reported that an activity as simple as opening
one’s eyes to read, increased the subjects’ breathing by
an average of 16% [22]. Shea found that with respect to
baseline, mental arithmetic induces a more rapid, shallow
breathing pattern, accompanied by an increase in oxygen
consumption [9]. Carroll et al. studied how this pattern
regresses, showing that increases in mental task difficulty
were associated with increases in breathing rate and sub-
jects’ self-reports of active engagement and arousal [23]. In
a broader context, other researchers also corroborated that
the more involved the subjects are in a task, the more their
breathing rate increases [24].

In agreement with the aforementioned positive psy-
chophysiological reports, some affective computing inves-
tigators reported that mental load during computer-based
tasks can be assessed though physiological measures [25].
Some other affective computing researchers, however, pub-
lished results that cast doubt on breathing as a mental activ-
ity predictor. McDuff et al. used heart rate, breathing rate,
and heart rate variability (HRV) to differentiate mental stress
between two computer-based tasks: ball control and card
sorting. They found breathing rates during these two tasks
to be significantly different than rest periods, indicating the
stressful nature of mental work. Nevertheless, they did not
detect any significant differences in the mean heart and
breathing rates between the two tasks, concluding that heart
and breathing rates alone are not discriminating enough to
identify different types of mental stress [26].

1.2 Contributions

In summary, breathing has been largely used in affective
computing research to track emotions or mental activity
of nonspeaking subjects. In emotion classification, results
were promising and in agreement with psychophysiological
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investigations [2], [17], [18]. In mental activity classification,
results were mixed [25], [26]. For speaking subjects, there is
little reporting due to the challenging nature of the problem
[7]. The novel framework of breathing analysis that we
introduce in this paper makes two major contributions:
First, it can handle both speaking and nonspeaking condi-
tions; second, it addresses the problem of mental activity
classification. The said framework draws its power from
the detangling of the metabolic, the volitional behavioral
(speech), and the involuntary behavioral (emotions and
mental loading) components of breathing. Viewing things
from an application perspective, the present paper con-
tributes a potent analytical tool for naturalistic affective
computing studies in knowledge work environments, where
speaking and non-speaking states freely intermix.

Our method manages to account for several contributing
sources of breathing patterns by using a comprehensive ar-
ray of physiologically informed features. The set of features
includes breathing depth, phase shift, and speed measures.
We show that in sitting subjects: a) Breathing depth features
help to account for mental loading as well as sighing asso-
ciated with fear stimuli. b) Phase shift features, revealing of
inspiration-expiration patterns, help to account for the pres-
ence/absence of speech. c) Breathing speed features help
to account for various emotional effects. Breathing depth
features have not been widely used in the affective com-
puting literature, which partly explains the mixed record of
prior research in differentiating mental stressors. Breathing
phase shift features have not been used at all in the affective
computing literature, which explains the difficulty of prior
work in dealing with speech. By contrast, breathing speed
features have been widely used in the affective computing
literature, which partly explains the relative success of prior
breathing analysis in nonspeaking emotional contexts.

To further enhance the discriminating power of our
feature set, we factor out the basal metabolic contribution
in each breathing feature, thus reducing inter-individual
variability. To achieve this, our method uses an estimate
of people’s baseline, where only their metabolic breathing
control system is at work. Dividing any observed breathing
level by the corresponding baseline level, yields a normal-
ized ratio that tracks the pure behavioral contributions to
breathing. To estimate the breathing baseline of subjects,
they must be put for a few minutes into a relaxed condition,
characterized by minimal sensory activation, motor action,
and mental activity [24]. Presently, an adequate baseline
procedure is often lacking in affective computing studies,
with serious downstream implications for the reliability of
breathing analysis [7].

As we are looking to establish the value added of
several features, it is important our analytical model to be
explainable. Accordingly, we optimize and test the proposed
feature set through a regression modeling process. The
model brings to the fore the discriminating power of distinct
feature groups against the mental stressors in Office Tasks
2019 - a naturalistic knowledge work dataset [7]. As far as
we can tell, this is the first time that such a variety of mental
stressors is successfully classified through breathing, even
in the presence of speech.

To investigate the broader value of our feature set, we
also test it on a second open dataset, associated with con-

trolled viewing of emotion-eliciting movie clips [8]. This
dataset has little to do with naturalistic knowledge work
in the presence/absence of speech, for which our feature
set was primarily designed. Nevertheless, our feature set’s
respectable performance in this second test case, demon-
strates the flexibility of our framework. Finally, to examine
the relative performance of our framework in different
ML algorithms, we carry out classification not only with
regression but also with random forest in both datasets.

In the remainder of the paper, we organize the de-
scription of our research as follows: First, we describe the
datasets we used to test our framework, explaining the
rationale for their selection (section 2). Next, we provide de-
tails of our signal processing and feature extraction methods
(section 3). Then, we present the results of our exploratory
and model-based analysis (section 4), before closing with a
balanced discussion (section 5).

2 DATASETS

2.1 Office Tasks 2019 Dataset
The primary dataset we used to showcase our framework
was Office Tasks 2019, which is publicly available in the Open
Science Framework (OSF)2. We reported the descriptor of
this dataset in [7], where one can find detailed information.
Here we outline the experimental design that gave rise to
this dataset, in order to help the reader contextualize our
analytic results.

The dataset contains multimodal data from n = 62
university student participants, who carried out a series of
knowledge work tasks under an institutionally approved
experimental protocol. The protocol featured the following
experimental sessions:

Resting baseline (RB). Participants were asked to close their
eyes and think of relaxing nature scenes for ∼ 4 min. The
aim was to minimize behavioral effects on breathing and
other peripheral physiological channels, leaving only basal
metabolic needs at play. As such, RB meant to serve as
reference point for arousal normalization.

Short task (ST). This was a mixed mental-emotional task.
Participants were given 5 min to write a short essay
expressing their opinions on the subject of competition
vs. collaboration. The aim was to simulate short bursts of
mental activity, dominated by time pressure. A timer on the
participants’ screen was amplifying the intended sense of
urgency.

Long task (LT). This was a mental task. Participants
were given 50 min to compose an essay on the topic of
technological singularity, that is, when machines overtake
human intelligence. The aim was to simulate prototypical
knowledge work of non-trivial duration that induces
mental load.

Presentation (PR). This was a mixed mental-social task.
Participants were asked to deliver a short speech (∼ 4 min)
about their LT essay, in front of a three-judge panel who

2. https://osf.io/zd2tn/
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attended via Skype. The aim was to simulate a well-known
socio-cognitive stressor in knowledge work environments.
The fact that the participants were speaking, complicated
breathing analysis.

Altogether, the protocol associated with the Office Tasks
2019 dataset features speaking and nonspeaking sessions
of various knowledge work tasks. Hence, the dataset fits
the aims of our research because it allows: a) to examine
the discriminating power of our method among different
types of mental activities, and b) to test our method’s ability
to account for the breathing effect of speech. Furthermore,
the dataset has been peer-reviewed, and contains data that
underwent quality control and validity checks [7].

During the experimental sessions, several imaging and
wearable sensors were continuously recording the partic-
ipants’ observational and physiological data. In this paper,
we focus on the breathing data channel, which was collected
via a Zephyr Bio-Harness 3.0 device (Zephyr Technology,
Annapolis, MD) the participants worn on the chest. We
used from Zephyr the raw breathing signals, captured at
full resolution (25 Hz). These signals are made up of the
instantaneous values of the Bio-Harness’s length, which
track the evolving rib cage circumference. Out of the 62
participants included in the Office Tasks 2019 dataset, full
resolution breathing data for five participants (T021, T032,
T035, T037, T066) were either missing altogether or at least
the RB session was missing. For one participant (T113) the
RB session was not properly done. Hence, we carried out
our analysis on the usable dataset of n = 56 participants
(age 23 ± 7.37), representing nearly 58 hours of breathing
recordings. The mean ± standard deviation duration of each
experimental session was as follows: for RB, 3.26 ± 0.94
min; for ST, 4.68 ± 0.00 min; for LT, 49.23 ± 3.24 min;
and for PR, 2.56± 0.53 min. With one experimental session
nearly an hour-long (LT), and another experimental session
featuring natural speech (PR), Office Tasks 2019 is unique
among the currently available affective datasets, and highly
appropriate to test the expressed aims of our proposed
breathing feature set.

2.2 CASE Dataset

To demonstrate the scalability of our framework, we opted
to apply it to a second dataset. To fulfill this goal, however,
we ran into significant practical difficulties. Breathing is
the slowest peripheral physiological channel. An average
sitting person exhibits each minute about 60 heartbeats,
but only 12 breaths [27], [28]. Just for this reason alone,
proper testing of sets of breathing features requires long
observation sessions. Furthermore, our breathing feature set
was designed to differentiate arousal responses generated
from naturally evolving stressful conditions, where speech
is often involved. Accordingly, it fits best naturalistic ex-
periments. Unfortunately, there is a dearth of datasets with
breathing function recordings from naturalistic experiments
with long sessions. The Office Tasks 2019 dataset [7] is
an exception, representing a new generation of studies.
Popular conventional datasets, like DEAP [2], are from
highly stylized experiments, where subjects were recorded
while watching video clips of minuscule duration (e.g., one

minute). Moreover, a significant portion of the feature set
we propose, are normalized features meant to ameliorate
inter-individual differences. Such features require individ-
ual baseline measurements for their computation. Unfor-
tunately, many open datasets either do not have baseline
measurements or they have trivial baseline measurements.
For instance, DEAP’s baseline measurements last just 10
seconds, which is the time needed for only 1-2 breaths -
hardly a solid statistical basis for normalization.

Given the aforementioned considerations, we chose to
work with the Continuously Annotated Signals of Emotion
(CASE) dataset [8], as the best available option. This is still
the product of a highly stylized experimental design, where
participants are recorded while watching specific movie
clips. Nevertheless, the average duration of the CASE movie
clips is close to 3 minutes, which is an improvement over the
one-minute clips featured in other datasets. Furthermore,
the movie clips were drawn from lists reported in reputable
psychological studies [29], [30], offering some assurances
about their arousal effect. Importantly, the CASE dataset
features clips that can serve as baseline sessions with mean
duration 1.84 min, thus offering a credible basis for feature
normalization.

The experimental protocol included eight movie clips,
which were watched in random order by n = 30 par-
ticipants. The emotional ratings of the movie clips are as
follows: two are boring, two are amusing, two are relaxing,
and two are scary. Since our framework is unimodal, encom-
passing only breathing features, we focus on arousal and not
valence classification, to avoid ambiguity [31]. As Fig. 5 in
the CASE paper suggests [8], the two scary movies gener-
ated arousal that was clearly higher than the largely over-
lapping arousal of the amusing and relaxing movies. The
arousal associated with the boring movies tended to be the
lowest and was set as baseline. Accordingly, we constructed
two classes for our testing: the Scary class associated with
breathing signals produced by the two scary movies, and the
Non-Scary class associated with breathing signals from the
amusing and relaxing movies. The CASE dataset includes
a little over 12 hours of breathing recordings, compared to
the 58 hours of the Office Tasks 2019 dataset. The mean ±
standard deviation duration of Non-Scary vs. Scary movies
is as follows: for Non-Scary, 2.58 ± 0.39 min; for Scary,
2.84± 0.62 min.

3 METHODS

3.1 Breathing Signal Processing
To prepare breathing signals for analytic work, first we
reduce noise through filtering, and then we capture funda-
mental functional information by identifying breathing cy-
cles. After these signal processing steps, we extract features
for analysis (Fig. 1).

3.1.1 Breathing Signal Filtering & Normalization
Breathing rates for adults take values in the range 0.1Hz
(6 breathing cycles/min) to 1Hz (60 breathing cycles/min)
[32]. Accordingly, we apply two Gaussian filters, as per
Equation (1) [33], on the raw breathing signals S:

fc =
Fs

2πσ
, (1)
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Fig. 1: Methodological flow that precedes our analysis.
Breathing signal filtering is followed by breathing cycle
extraction, before the computation of features takes place.

where fc is the desired cut-off frequency, σ is the filter’s
standard deviation, and Fs = 25 Hz is the breathing sig-
nal sample rate used in Zephyr Bio-Harness. To eliminate
frequencies > 1Hz from a raw breathing signal S, we set
fc ≡ fhigh = 1; from Eq. (1), the standard deviation σhigh

of this high-pass filter, which is a measure of its size, is
computed to be:

σhigh =
Fs

2πfhigh
=

25

2π ∗ 1
≈ 4 samples. (2)

To eliminate frequencies > 0.1Hz from a raw breathing
signal S, we set fc ≡ flow = 0.1; from Eq. (1), the standard
deviation σlow of this low-pass filter, which is a measure of
its size, is computed to be:

σlow =
Fs

2πflow
=

25

2π ∗ 0.1
≈ 40 samples. (3)

Hence, we correspondingly obtain two filtered breathing
signals S′

high and S′
low. The normalized breathing signal S′′,

band-passed between 0.1Hz and 1Hz, is computed to be:

S′′ = S′
high − S′

low. (4)

Figure 2 shows results of the filtering process applied on
the breathing signals of participant T003 in the Office Tasks
2019 dataset. Note that Eq. (4) detrends S′′, centering it on
the zero line. Such a signal transformation facilitates tidal
volume checking during the extraction of breathing cycles.

3.1.2 Breathing Cycle Extraction
Figure 3 illustrates the landmark points (valleys and
peak) that delineate a breathing cycle, complete with
their anatomical correspondence. We use the following
algorithm to identify breathing cycles in the normalized
signal S′′(i, j, t) of participant i, for session j, over time t.

Step 1 - Estimate start/end of breathing cycle (valleys):
Find two consecutive local minima S′′

in and S′′
ex;

potentially, these are the breathing cycle’s inspiratory
start and expiratory end points. To locate such minima,
scan the signal in time windows that correspond to
the minimum possible duration of a breathing cycle.
Given that our high-pass filter has been set to 1 Hz,
the scan window must be set to 1 second. In such a
window, find the minimum value S′′

in. Then, test if
S′′
in conforms to a standard valley detection template:

S′′(t − 2) > S′′(t − 1) > S′′
in(t) < S′′(t + 1) < S′′(t + 2).

In essence, this template is the discrete definition of the
derivative test for locating curve minima. We validated
such a valley detection template for physiological signals
in [34]. If S′′

in conforms to the valley template, then it is
marked as the breathing cycle’s potential inspiratory start
point. If not, the same procedure is applied in the next scan
window and so on, until a legitimate breathing cycle start
point is identified. Following that, the same procedure is
applied in subsequent scan windows, in search this time
of a second valley point S′′

ex, which will be the breathing
cycle’s potential expiratory end point.

Step 2 - Demarcate inspiration from expiration (peaks):
Find the maximum signal value between S′′

in and S′′
ex; this

is the peak point S′′
p that likely demarcates the inspiration

from the expiration phase in the breathing cycle. Figure 3a
shows the detected valleys (S′′

in, S′′
ex) and peak (S′′

p ) in a
breathing cycle of participant T003 in the Office Tasks 2019
dataset; Fig. 3b shows the anatomical correspondences of
these landmarks.

Step 3 - Proceed: Repeat Step 1 - Step 2 until the end of
signal S′′(i, j, t) is reached. Figure 4 shows examples of the
algorithm’s performance on T003’s breathing signals.

Step 4 - Eliminate spurious valleys and peaks: Although
the band-pass filter eliminates a significant amount of
noise in the breathing signals, some residual noise remains,
which may give rise to spurious valleys and peaks. We
eliminate such spurious valleys and peaks by leveraging
physiological information in the form of tidal volume (TV).
The participants’ TV is the amount of air they inhale and
exhale in a standard breath [35]. The best session to estimate
a participant’s TV in the Office Tasks 2019 dataset is the
RB session, where the participants are relaxed and free of
any behavioral intervention. The difference between the
median peak and valley in the RB session of participant
i provides a reasonable approximation to individual TV.
Due to behavioral interventions in the other sessions of the
experiment, the participants are likely to hyperventilate
at times in sessions ST, LT, and PR. Hyperventilation can
reduce TV by over 50% [36]. Accordingly, we take 40%
of TV as a safe threshold, symmetrically arranged (±20%
TV) around the zero line of the normalized breathing
signal (Fig. 3a). The valleys and peaks that fall within
the threshold band indicate minimal breathing cycles that
are physiologically unlikely even under hyperventilating
conditions; thus, they are eliminated from consideration.

Step 5 - Eliminate redundant valleys and peaks: By the
definition of breathing cycle, there should be only one peak
between two valleys and only one valley between two
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Fig. 2: Breathing signal filtering and normalization. Left panels: Raw, filtered, and normalized breathing signals of
participant’s T003 RB session in the Office Tasks 2019 dataset. Superimposed on the raw signal S are the high- and low-pass
filtered signals, S′

high and S′
low, respectively, whose difference produces the normalized signal S′′. Right panels: Same

information as in the left panels, but for the PR session of participant T003.

a b

Fig. 3: Normalized signal and anatomical illustration of breathing cycle. a. In a breathing cycle of participant T003 in
session RB of Office Tasks 2019, the detected valleys S′′

in, S
′′
ex and peak S′′

p are shown in black and red font, respectively, on
the normalized signal. The threshold band, computed as 40% of the participant’s T003 tidal volume S′′

TV , is demarcated by
the hyphenated green lines. Within this band, any valleys and peaks are considered physiologically unlikely and ignored.
b. Correspondence between rib cage evolution and breathing cycle landmark points. The inspiratory start Sin, expiratory
end Sex, and peak Sp states are expressed in their actual (i.e., non-normalized) form.

peaks. A quality control (QT) script checks for this condition
across the S′′(i, j, t) signal; where the condition is violated,
QT keeps only the lowest valley (or highest peak), while
discarding the redundant valleys (peaks). These redundant
landmarks in the breathing signals are often the results
of asynchronous breathing patterns, when the chest and
abdomen are not moving in unison [37]. Figure 4d gives
an example of the algorithm’s handling of spurious and re-
dundant valleys/peaks. Figure 5 shows how the algorithm
worked step by step to produce the result shown in Fig. 4d.

Figures 6a and 6b show the breathing cycles identified by
this five-step algorithmic process for participants T003 and

1 in the Office Tasks 2019 and CASE datasets, respectively.
To facilitate cycle viewing in each experimental session, we
translate cycles so that are separated by a few points from
each other on the vertical axis. Accordingly, the vertical axis
shows relative and not absolute rib cage displacement. The
LT session in the Office Tasks 2019 dataset has a lot more
cycles than the other sessions due to its much longer length.
In fact, only 120 out of the 379 LT cycles are shown in Fig.
6a, as it was not practical to fit the rest in the panel. In
each session displayed in Fig. 6, the breathing cycles appear
congruent - a sign of accurate extraction. One can observe
the large depth and asymmetric form of the cycles in the
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Fig. 4: Breathing cycle detection for participant T003 in the Office Tasks 2019 dataset. The algorithmically detected
valleys and peaks are marked in blue and red, respectively. The threshold band, identifying the portion of the signal
where the appearance of valleys and peaks is physiologically unlikely, is demarcated between hyphenated green lines. Any
valleys/peaks identified within this band are dropped from consideration. a. RB session sample. b. ST session sample. c.
LT session sample. d. PR session sample, where between 110 s and 120 s there is a peak and a valley that fall within the
threshold band; thus, they are ignored.

Fig. 5: Three-stage estimation of valleys and peaks for participant T003 in session PR of the Office Tasks 2019 dataset.
a. Detection of valleys and peaks. b. Elimination of spurious valleys and peaks that fall within the threshold band. c
Elimination of redundant valleys and peaks.

PR session, where participants speak. Deep cycles are also
abundant in the Scary session, with a fear-related sighing
effect apparent in the blue waveform.

3.2 Breathing Feature Computation
After having extracted all cycles in breathing signal
S′′(i, j, t), we compute three groups of features that tend
to capture different behavioral aspects. First, we compute

breathing depth features for capturing increased metabolic
demands beyond the basal level. In sitting subjects, such
demands are typically associated with mental activities. Oc-
casionally, breathing depth features capture sighing effects
associated with fear responses Second, we compute phase
shift features for capturing any rearrangement between
inspiration and expiration. We expect phase shift features
to contribute in the differentiation between speaking and
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Fig. 6: Algorithmically extracted breathing cycles. a. For participant T003 in the Office Tasks 2019 dataset: all cycles of
sessions RB, ST, and PR, as well as 120 out of the 379 cycles in the long LT session. b. For participant 1 in the CASE dataset:
all cycles of sessions Baseline, Non-Scary, and Scary. We applied a ‘jittering’ function on the vertical axis to avoid cycle
overlapping. For this reason, the vertical axis shows relative (not absolute) rib cage displacement. Within each experimental
session, cycles appear congruent - a sign of accurate extraction.
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nonspeaking states. Third, we compute breathing speed
features for capturing ‘fight or flight’ effects, associated with
emotional states. For all features, we compute normalized
versions that are ‘free’ of the basal metabolic component
of breathing. This comprehensive set of features aims to
endow our ML models with strong discriminating capabili-
ties, by providing them with breathing information relevant
to mental loading, fear responses, speaking/nonspeaking
state, and emotional influences.

3.2.1 Breathing Depth Features

The breathing depth feature group includes breathing vol-
ume and breathing amplitude features. We calculate a cor-
relate of the breathing volume per cycle, and then we derive
a correlate of the breathing volume per second from it. With
the understanding that these measures are correlates and
not exact estimates, we will call them breathing volume per
cycle and breathing volume per second, for brevity.

Our calculation is rooted in the respiratory inductive
plethysmography (RIP), which was introduced by Kono
and Mead in 1967 and has since been used for monitoring
patients in clinical settings [38]. In RIP, the breathing vol-
ume is derived by measuring the changes brought about
by respiration on two inductive belts placed around the
abdomen and rib cage of a subject. In the Office Tasks 2019
experiment, however, there was only one inductive belt, set
up to measure rib cage changes. The CASE experiment, also
featured a single inductive belt, as is the case with most
affective computing experiments involving breathing mea-
surements. Hence, we needed to simplify the RIP model.
Per Kono and Mead’s study, the rib cage accounts for about
half of the tidal volume when the total volume change is
constrained. Since the participants in the studies of interest
to us remain seated and our data processing eliminated
spurious breathing cycles, rib cage volume changes are
proportional to the total lung volume changes (Fig. 3b).

We model the rib cage shape as a cylinder, following a
methodology reported by Augusti in [39]. Accordingly, the
rib cage volume V can be calculated as V = πr2h, where r
and h are the radius and height of the rib cage, respectively.
Taking the approximation h = 2r [39], simplifies the rib
cage volume equation to V = 2πr3. Replacing the radius r
with the perimeter P (r = P/2π), yields the final rib cage
volume equation V = P 3/4π2. Each breathing cycle fea-
tures two phases, the inspiration phase in and the expiration
phase ex. Per our standard symbolism, Sin, Sp, and Sex

denote the inspiration valley, the peak, and the expiration
valley, respectively, in a breathing cycle; they express the
corresponding length of the inductive belt in cm, which is
tantamount to the rib cage. Note that we do not use the
normalized values S′′

in, S′′
p , and S′′

ex, but the corresponding
filtered values S′

in, S′
p, and S′

ex, exactly because they are
associated with the actual rib cage measurements.

We calculate the inspiration volume δVin by summing
up infinitesimal volumes computed every second t ∈
[1, . . . , n] of the inspiration:

δVin =
S′3
p (t)− S′3(t− 1)

4π2
+. . .+

S′3(t− n− 1)− S′3
in

4π2
(5)

We calculate the expiration volume δVex by summing up
infinitesimal volumes computed every second t ∈ [1, . . . ,m]
of the expiration:

δVex =
S′3
p − S′3(t+ 1)

4π2
+ . . .+

S′3(t+m− 1)− S′3
ex

4π2
(6)

We estimate the total volume δVc for breathing cycle c by
adding δVin and δVex:

δVc = δVin + δVex. (7)

Using Eq. (7), we estimate the volume of each breathing
cycle and compute the following features: δV c(i, j) ≡ mean
breathing volume per cycle for each treatment j of each
participant i; SD[δVc(j)] ≡ the standard deviation of the
participants’ breathing volumes per cycle for each treatment
j; ∥δV c(i, j)∥N ≡ the normalized mean breathing volume
per cycle for each treatment j of each participant i, where
normalization is realized by dividing with the participant’s
mean breathing volume per cycle in the RB session. The
same breathing volume features are also computed on a
per second basis. We also compute the mean, normalized
mean, and standard deviation for the breathing waveform
amplitude, which is a direct measure of breathing depth.
The statistical formulas for the breathing volume and am-
plitude features are given in Table 1.

3.2.2 Breathing Phase Shift Features
To track shifts between the inspiration and expiration phases
of breathing cycles, we use the respiratory time quotient
(RTQ). RTQ is a concept first introduced by Conrad et al.
[40]. It expresses the relation of inspiration and expiration
as the duration of inspiration divided by that of expiration.
Here we calculate the RTQ value for each breathing cycle
through Eq. (8):

RTQ =
Tp − Tin

Tex − Tp
, (8)

where Tin is the timestamp at point S′
in and Tex is the

timestamp at point S′
ex, Tp is the timestamp at point S′

p

(Fig. 3). Then, we compute the mean and normalized mean
of RTQ for each treatment j of each participant i; we also
compute for each treatment j the standard deviation of the
RTQs of the participants in that treatment (Table 1).

3.2.3 Breathing Speed Features
We compute breathing speed features, first by computing
the mean and normalized mean of breathing rate for each
treatment j of each participant i. For each treatment j, we
also compute the standard deviation of the breathing rates
of the participants in that treatment. Similarly, we compute
the mean, normalized mean, and standard deviation for
the breathing waveform length, which indicates breathing
duration and is related to breathing frequency. Table 1
shows the statistical formulas for these and all the other
features used in our analytical framework.

4 ANALYTIC RESULTS

In the Office Tasks 2019 dataset, the knowledge work tasks
ST, LT, and PR are challenging and are expected to increase
arousal [7]. The nature of the challenge, however, differs
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TABLE 1: Breathing function features used in our analytical framework. The breathing cycle index is c and the total
number of breathing cycles in a session is denoted as C . Features listed on a white background belong to the breathing
depth group. Features listed on a light gray background belong to the breathing phase shift group. Features listed on a
dark gray background belong to the breathing speed group.

C Features Description Symbol Domain*

1 δV c(i, j) =

∑C
c=1 δV (i, j, c)

C
Mean breathing volume/cycle BVC AVG S′

2 SD[δVc(i, j)] =

√∑C
c=1[δV (i, j, c)− δV c(i, j)]2

C
SD of breathing volumes/cycle BVC SD S′

3 ∥δV c(i, j)∥N =
δV c(i, j)

δV c(i,RB)
Normalized δV c(i, j) BVC NORM S′

4 δV t(i, j) =

∑C
c=1[δV (i, j, c)/tc]

C
=

∑C
c=1 δVt(i, j, c)

C
Mean breathing volume/second BVT AVG S′

5 SD[δVt(i, j)] =

√∑C
c=1[δVt(i, j, c)− δV t(i, j)]2

C
SD of breathing volumes/second BVT SD S′

6 ∥δV t(i, j)∥N =
δV t(i, j)

δV t(i,RB)
Normalized δV t(i, j) BVT NORM S′

7 WA(i, j) =

∑C
c=1 WA(i, j, c)

C
Mean waveform amplitude WA AVG S′

8 SD[WA(i, j)] =

√∑C
c=1[WA(i, j, c)−WA(i, j)]2

C
SD of waveform amplitudes WA SD S′

9 ∥WA(i, j)∥N =
WA(i, j)

WA(i,RB)
Normalized WA(i, j) WA NORM S′

10 RTQ(i, j) =

∑C
c=1 RTQ(i, j, c)

C
Mean RTQ RTQ AVG S′

11 SD[RTQ(i, j)] =

√∑C
c=1[RTQ(i, j, c)−RTQ(i, j)]2

C
SD of RTQs RTQ SD S′

12 ∥RTQ(i, j)∥N =
RTQ(i, j)

RTQ(i,RB)
Normalized RTQ(i, j) RTQ NORM S′

13 BR(i, j) =

∑C
c=1 BR(i, j, c)

C
Mean breathing rate BR AVG S′

14 SD[BR(i, j)] =

√∑C
c=1[BR(i, j, c)−BR(i, j)]2

C
SD of breathing rates BR SD S′

15 ∥BR(i, j)∥N =
BR(i, j)

BR(i,RB)
Normalized BR(i, j) BR NORM S′

16 WL(i, j) =

∑C
c=1 WL(i, j, c)

C
Mean waveform length WL AVG S′

17 SD[WL(i, j)] =

√∑C
c=1[WL(i, j, c)−WLc(i, j)]2

C
SD of waveform lengths WL SD S′

18 ∥WL(i, j)∥N =
WL(i, j)

WL(i,RB)
Normalized WL(i, j) WL NORM S′

among tasks, and the question is if the comprehensive set of
breathing features in Table 1 can capture these differences
while also accounting for speech effects. There is also a
question as to whether our feature set can capture the fear
responses in the CASE dataset. The ensuing exploratory and
model analysis addresses these questions.

4.1 Exploratory Analysis
4.1.1 Exploratory Analysis on Office Tasks 2019
Exploratory analysis brings to the fore a consequential in-
terplay between breathing rate and breathing volume in

the various tasks of the knowledge work experiment asso-
ciated with Office Tasks 2019. Normalized mean breathing
rate (BR NORM) increases in ST, while recedes in LT, and
recedes even further in PR, dropping below baseline levels
(Fig. 7-E1). Accordingly, if one were to use exclusively
BR NORM to track arousal, as is often the case in the
literature [7], s/he would have concluded that ST is the
task that produces the strongest arousal responses, while PR
is a non-stressful task! We observe, however, that the nor-
malized mean breathing volume per second (BVT NORM)
increases in LT with respect to ST, and increases even further
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Fig. 7: Bar plots of participant means with error bars for normalized breathing features in each experimental session
of the Office Tasks 2019 and CASE datasets. A1-A2. BVC NORM ≡ Normalized mean breathing volume/cycle. B1-
B2. BVT NORM ≡ Normalized mean breathing volume/second. C1-C2. WA NORM ≡ Normalized mean waveform
amplitude. D1-D2. RTQ NORM ≡ Normalized mean respiratory time quotient. E1-E2. BR NORM ≡ Normalized mean
breathing rate.

in PR (Fig. 7-B1), revealing an antithetical trend to the one
observed for normalized breathing rate. Although at face
value these two results appear to contradict each other, on
closer examination offer complementary insights.

Since all the experimental tasks are of cognitive nature
to one degree or another, arousal is expected to facilitate
the increased metabolic needs of the brain, which is hard at
work. In this respect, the normalized breathing volume per
second (BVT NORM) reliably captures this physiological
necessity, indicating that tasks ST, LT, and PR led to an
aroused state (Fig. 7-B1). What, however, BVT NORM does
not clearly show is how these aroused states were effected.
To elucidate this information, we need to look into the
normalized mean breathing volume per cycle (BVC NORM)
and normalized mean waveform amplitude (WA NORM)
vis a vis the normalized mean breathing rate (BR NORM).

In ST, as can be observed in Fig. 7-A1 and Fig. 7-C1, the
measures of breathing depth BVC NORM and WA NORM
are even lower than the baseline. This is compensated by
a significant increase of BR NORM in ST - the highest

among all treatments (Fig. 7-E1). The combined result is
that the mean breathing volume per second (BVT NORM)
remains above the baseline, indicating an aroused state (Fig.
7-B1). The participants’ physiology manages to furnish the
brain with increased amounts of oxygen to help it cope
with ST’s elevated mental load. The process through which
this is achieved involves fast but shallow breathing. Such
a decomposition of the breathing phenomenon beautifully
explains the additional stressor present in ST. ST was a
short essay writing session, lasting only 5 minutes and with
a ticking clock in constant reminder of that. Thus, time
pressure loomed large in ST, triggering a flight response.
This flight response is the likely culprit behind the signifi-
cant increase in breathing rate during ST (Fig. 7-E1), which
was accompanied by a reduction in the amplitude of the
breathing waveform (Fig. 7-C1).

In task LT, the participants engage in an essay writing
task for nearly an hour. Hence, time pressure dissipates and
the flight response recedes in LT, bringing about a decrease
in breathing rate with respect to ST. Nevertheless, the need
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Fig. 8: Example of changing breathing signal profiles in response to behavioral interventions. Breathing signals during
the RB, ST, LT, and PR sessions for participant T079 in the Office Tasks 2019. Since the signals were captured through the
BioHarness, they express the evolving rib cage perimeter. It is clearly shown how shallow breaths in ST, change to deeper
breaths in LT, and even deeper breaths in PR.

for providing the brain with increased levels of oxygen in LT
is even stronger than the ST task. For this reason, the breath-
ing rate decrease (Fig. 7-E1) is more than compensated by
an increase in the breathing volume per cycle (Fig. 7-A1),
resulting in an increase of the breathing volume per second,
which surpasses ST (Fig. 7-B1). Hence, arousal addresses the
significantly increased metabolic needs of the brain in LT by
instituting deep breathing patterns instead of the shallow
ones it effects in ST.

In task PR, the breathing rate is reduced with respect to
task LT, dropping even lower than the baseline (Fig. 7-E1).
However, this breathing rate diminution is compensated by
a dramatic increase in the breathing volume per cycle (Fig.
7-A1). The combined result is that the breathing volume per
second in PR emerges as the highest among all the tasks,
suggesting the strongest arousal (Fig. 7-B1). This outcome
is in agreement with the facial electrodermal (EDA) result
reported by Zaman et al. in the dataset’s data descriptor [7].
It appears that in PR, arousal accommodates the increased
metabolic needs of the brain, during the demanding task of
articulating and delivering a talk on the fly, by deepening
the breathing patterns even further. In the context of these
deeper PR breathing patterns, the drop of the mean RTQ
value suggests a relative increase of the expiration over the
inspiration period - a within cycle rearrangement meant
to facilitate speech. This result too is in agreement with
other reports in the literature [40]. In fact, one can observe
the lengthier expiration phase in PR in the right-skewed
waveform cycles of participant T003 in Fig. 4d. Figure 8
shows the breathing signals of participant T079 in ST, LT,
and PR, providing a comprehensive example of the distinct
breathing patterns arising from the three behavioral inter-
ventions.

4.1.2 Exploratory Analysis on CASE

For the CASE dataset, where there is no speaking session,
things are simpler. Participants are more aroused when
they watch scary movie clips. This is evident in Fig. 7-
C2, where the breathing depth measure WA NORM for the
Scary treatment stands well above the baseline, while this
is not the case for the Non-Scary treatment. Hence, fear
conditioning appears to be associated with deeper breaths,
something that is also supported by the psyhcophysiological
literature [41]. Unlike in the Office Tasks 2019 dataset, here
the RTQ measure is non-discriminating, because neither
the Scary nor the Non-Scary treatment involves speaking
participants (Fig. 7-D2).

4.2 Regression Analysis

4.2.1 Multinomial Regression on Office Tasks 2019

The key question in our research is if the physiologically
motivated groups of breathing features in Table 1 can be
used to identify the different arousal profiles manifested in
knowledge work tasks exemplified by ST, LT, and PR. We
opt to use multinomial regression because not only is an
effective multi-class classification model for moderate size
datasets, but also provides highly explainable results.

Prior to applying the model, we check if any of the pro-
posed features are highly correlated. In the cross-correlation
matrix, we identify six sets of highly correlated features;
four sets are centered on breathing depth statistics while
the other two are centered on breathing speed statistics
(Fig. 9a). Only one feature per cross-correlated set should
be kept in the model, while the rest should be eliminated.
To find the optimal feature in each case, we test exhaus-
tively all the combinations that arise from candidate fea-
ture eliminations in the cross-correlated sets. The following
six features survive this optimization process: BVT AVG,
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Fig. 9: Cross-correlation matrices of all features for the a. Office Tasks 2019 and b. CASE datasets. The matrices reveal
sets of highly correlated features that need to be optimally reduced. Highly correlated features are defined as features that
have correlation coefficient |r| ≥ 0.80; they correspond to dark (positive) and white (negative) cells in the cross-correlation
matrices. Outlined in green, are six blocks of highly correlated features in Office Tasks 2019 and three blocks in CASE.

BVC SD, WA SD, BVT NORM, WL AVG, and BR NORM
(Table 2 - Office Tasks 2019 section).

TABLE 2: Sets of highly correlated features gleaned from
the cross-correlation matrices in Fig. 9. The highlighted
features denote the optimal selections from each set, after
an exhaustive combinatorial search.

CORRELATED SETS SET MEMBERS

Depth AVG Set { WA AVG, BVT AVG , BVC AVG }

Depth AVG/SD Set {BVC AVG, BVC SD }

Depth SD Set {BVT SD, WA SD }

Depth NORM Set {BVC NORM, BVT NORM }

Speed AVG Set { BR AVG, WL AVG }

Speed NORM Set { BR NORM , WL NORM }

O
FF

IC
E

TA
SK

S
20

19

Depth AVG Set { BVT AVG , BVC AVG }

Speed AVG Set { BR AVG, WL AVG }

Speed NORM Set { BR NORM , WL NORM }

C
A

SE

After this first round of feature elimination, we construct
a multinomial regression model with the remaining 12 out
of the original 18 features (Eq. (9)). The response variable
in this model is session-related arousal AR with three

levels corresponding to the ST, LT, and PR sessions of the
experiment:

AR ∼βI + βaBVC SD+

βbBVT AVG + βcBVT NORM+

βdWA SD + βeWA NORM+

βfRTQ AVG + βgRTQ SD + βhRTQ NORM+

βiBR SD + βjBR NORM+

βkWL AVG + βlWL SD.

(9)

We apply the backward elimination method to optimize the
model described in Eq. (9). The result is a reduced model
with six predictors, which is described in Eq. (10).

AR ∼β0 + β1BVT NORM + β2WA SD +

β3RTQ AVG + β4RTQ NORM +

β5WL AVG + β6WL SD
(10)

For this ultimate model, the coefficients of the predictors,
along with their standard errors and significance levels
are given in Table 3a. We observe that normalized depth
and phase shift features play a significant predictive
role across the ST, LT, and PR classes - a result that
justifies the accounting of the basal metabolic component
in our framework. Indeed, the normalized breathing
volume per second (BVT NORM) and the normalized
RTQ (RTQ NORM) are significant predictors across the
board (p < 0.01 for all cases). These results establish the
progressive increase (decrease) of normalized breathing
volume per second (normalized RTQ) as participants move
from ST to LT and eventually to PR. The phase shift feature
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RTQ in particular, is a significant differentiator between PR
(p < 0.001) and the other two sessions. The strong negative
coefficient (β = −2.118) indicates a dramatic RTQ decrease
in PR - a sure sign of longer expiration, which is typically
associated with speech production.

One-vs-Rest Classification w/ Regression: In this and the
other classifications presented in this paper, we classify
arousal through breathing signals, using our proposed fea-
ture set. The classification labels for the breathing signals are
PR, LT, and ST, symbolizing the three types of hyperarousal
produced in the respective sessions of the Office Tasks 2019
experiment. Using the optimized set of predictors suggested
in Eq. (10), we perform one-vs-rest classification. One-vs-rest
is a standard method to perform multinomial classification,
by performing a set of binomial classifications. In this case,
we perform three binomial tests: a) PR vs. [ST ∪ LT]. b) LT
vs. [ST ∪ PR]. c) ST vs. [LT ∪ PR]. Each of these three tests
is performed on every piece of data, and the test that yields
the strongest score becomes the ultimate classification result
per occasion.

To assess robustness, we operationalize classification via
k-fold cross-validation. We choose k=3. Accordingly, we
split the data in each interventional session in three equi-
table subsets DST

i , DLT
i , DPR

i i = 1 . . . 3. Then, we produce
representative subsets Di, i = 1 . . . 3 for the entire experi-
ment by joining the corresponding equitable subsets of the
different interventions: Di = DST

i ∪DLT
i ∪DPR

i . We keep one
Di for testing, while we use the other two Dj , j ̸= i for
training. We repeat the process k=3 times. Figure 10a shows
the 3-fold ROCs for the three different treatments PR, LT,
and ST. One-vs-rest classification remains robust in all three
treatments. The mean AUC in PR is in the mid 90s, while
in the ST and LT stands around 90 and in the mid 70s, re-
spectively. In all three cases the standard deviation is small.
Specifically, for PR, ST, and LT, the one-vs-rest 3-fold AUC
distributions are 0.96 ± 0.02, 0.90 ± 0.00, and 0.75 ± 0.05,
respectively.

The summative confusion matrices and statistics of key
classification metrics are reported in Table 3b and 3c, re-
spectively. The confusion matrices indicate that in terms of
true positives vs false negatives one vs. rest classification
performs very well in all three tasks. In terms of true
negatives vs. false positives, however, the performance is
superior in the PR task followed by the ST task; the LT
task performs the worst. This performance ranking is also
reflected in the accuracy, recall, and F1 scores. For instance,
for PR the F1 score distribution is in the upper 80s, for ST in
the low 80s, and for LT in the low 70s.

4.2.2 Logistic Regression on CASE
The CASE dataset is of a much simpler study than the Office
Tasks 2019 study. In the context of testing our breathing
feature set (Table 1), the key objective is to differentiate
between arousal responses from watching Scary vs. Non-
Scary movie clips. As we are confronted with a binary
classification problem, we construct a logistic regression
model, where the response variable is the odds P (AR) of
arousal associated with Scary movie clip watching.

Prior to applying the said model, we check if any of
the features in Table 1 are highly correlated. In the cross-

correlation matrix shown in Fig. 9b, we identify three sets of
highly correlated features; one set is centered on breathing
depth statistics, while the other two are centered on breath-
ing speed statistics. Only one feature per cross-correlated
set should be kept in the model, while the rest should
be eliminated. To find the optimal feature in each case,
we test exhaustively all the combinations that arise from
candidate feature eliminations in the cross-correlated sets.
The following three features survive this optimization pro-
cess: BVT AVG, WL AVG, and BR NORM (Table 2 - CASE
section). After this first round of feature elimination, we
construct the logistic regression model with the remaining
15 out of the original 18 features (Eq. (11)).

P (AR) ∼ β′
I +

β′
aBVC SD + β′

bBVC NORM +

β′
cBVT AVG + β′

dBVT SD + β′
eBVT NORM +

β′
fWA AVG + β′

gWA SD + β′
hWA NORM +

β′
iRTQ AVG + β′

jRTQ SD + β′
kRTQ NORM +

β′
lBR SD + β′

mBR NORM +

β′
nWL AVG + β′

oWL SD.

(11)

We apply the backward elimination method to optimize the
model described in Eq. (11). The result is a reduced model
with two predictors, which is described in Eq. (12).

P (AR) ∼ β′
0 + β′

1BVT AVG + β′
2WA NORM. (12)

For this ultimate model, the coefficients of the predictors,
along with their standard errors and significance levels
are given at the bottom of Table 3a. Like in Office Tasks
2019, there is at least one normalized depth feature (i.e.,
WA NORM) that plays a significant predictive role - a
result that further justifies the accounting of the basal
metabolic component in our framework. Unlike in Office
Tasks 2019, no normalized phase shift feature (i.e., RTQ x)
plays any significant predictive role. This is to be expected,
as participants are silent in CASE.

Binary Classification w/ Regression: The classification la-
bels for the breathing signals are Scary and Non-Scary, sym-
bolizing the two types of arousal produced in the respective
movie viewing sessions of the CASE experiment. Using
the optimized set of predictors suggested in Eq. (12), we
perform binomial classification in the CASE dataset.

To assess robustness, we operationalize classification via
3-fold cross-validation. Figure 10c shows the resulting 3-fold
ROC. Regression classification performance is good, with
the 3-fold AUC distribution standing at 0.71 ± 0.04. The
summative confusion matrix and statistics of key classifi-
cation metrics are reported in Table 3b and 3c, respectively.
The confusion matrix indicates that in terms of true positives
vs false negatives regression classification performs very
well. In terms of true negatives vs. false positives, how-
ever, the performance is relatively lower. This performance
signature is reflected in the accuracy, recall, and F1 scores.
Characteristically, recall stands at 0.86±0.09 while accuracy
is 0.72± 0.03.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 15

TABLE 3: Regression parameters and classification metrics. a. Parameter estimates for the multinomial and logistic
regression models in Eqs. (10) and (12), corresponding to the Office Tasks 2019 and CASE datasets. β· are the estimated
regression coefficients. SE are the standard errors of the individual regression coefficients. Pr(> |z|) are the p-values of the
coefficients. Significance levels have been set as follows: *: p < 0.05, **: p < 0.01, ***: p < 0.001. b. Summative confusion
matrices for regression and random forest operating upon the Office Tasks 2019 and CASE datasets. The summation was
done over the results of 3-fold cross-validation in each task. c. Summary statistics of key classification metrics for regression
and random forest operating upon the Office Tasks 2019 and CASE datasets. The statistics reflect the performance results of
3-fold cross-validation in each task. d. Derivation of total records shown in the summative confusion matrices. Resampling
is performed by standard Python routines to ameliorate imbalances in the data.

a OFFICE TASKS 2019 DATASET CASE DATASET

ST LT PR

β· SE Pr(> |z|) β· SE Pr(> |z|) β· SE Pr(> |z|) β· SE Pr(> |z|)

BVT NORM -1.741 0.41 < 0.001 ∗∗∗ 1.900 0.518 < 0.001 ∗∗∗ 2.292 0.756 0.002 ∗∗

WA SD -1.936 0.518 < 0.001 ∗∗∗ 2.174 0.625 0.001 ∗∗ 2.471 0.776 0.001 ∗∗

RTQ AVG 0.311 0.181 0.087 0.246 0.183 0.179 -0.775 0.311 0.013 ∗

RTQ NORM 0.996 0.238 < 0.001 ∗∗∗ -0.813 0.239 0.001 ∗∗ -2.118 0.546 < 0.001 ∗∗∗

WL AVG -0.004 0.524 0.994 -2.728 0.554 < 0.001 ∗∗∗ 2.536 0.663 < 0.001 ∗∗∗

WL SD 0.973 0.393 0.013 ∗ 1.999 0.571 < 0.001 ∗∗∗ -5.864 1.282 < 0.001 ∗∗∗

BVT AVG 0.367 0.166 0.028 ∗

WA NORM 0.694 0.171 < 0.001 ∗∗∗

b ST LT PR

ACTUAL YES ACTUAL NO PREDICTED TOTAL ACTUAL YES ACTUAL NO PREDICTED TOTAL ACTUAL YES ACTUAL NO PREDICTED TOTAL ACTUAL YES ACTUAL NO PREDICTED TOTAL

R
eg

re
ss

io
n

PREDICTED YES TP = 39 FP = 11 50 TP = 36 FP = 26 62 TP = 35 FP = 1 36 TP = 51 FP = 27 78

PREDICTED NO FN = 6 TN = 76 82 FN = 8 TN = 62 70 FN = 8 TN = 88 96 FN = 8 TN = 34 42

ACTUAL TOTAL 45 87 132 44 88 132 43 89 132 59 61 120

R
an

do
m

Fo
re

st

PREDICTED YES TP = 32 FP = 8 40 TP = 36 FP = 23 59 TP = 40 FP = 7 47 TP = 51 FP = 15 66

PREDICTED NO FN = 10 TN = 82 92 FN = 7 TN = 66 73 FN = 7 TN = 78 85 FN = 9 TN = 45 54

ACTUAL TOTAL 42 90 132 43 89 132 47 85 132 60 60 120

c ST LT PR

ACCURACY RECALL F1 ACCURACY RECALL F1 ACCURACY RECALL F1 ACCURACY RECALL F1

REGRESSION 0.87± 0.01 0.87± 0.00 0.82± 0.02 0.76± 0.08 0.84± 0.17 0.70± 0.03 0.93± 0.02 0.81± 0.04 0.89± 0.04 0.72± 0.03 0.86± 0.09 0.75± 0.06

RANDOM FOREST 0.86± 0.06 0.77± 0.06 0.79± 0.06 0.77± 0.06 0.84± 0.04 0.71± 0.04 0.89± 0.06 0.85± 0.04 0.84± 0.07 0.80± 0.05 0.85± 0.06 0.81± 0.06

d ORIGINALLY (ST = 56) + (LT = 53) + (PR = 51) = 160 RECORDS → ORIGINALLY 180 RECORDS →
AFTER RESAMPLING = 132 RECORDS = AFTER RESAMPLING = 198 RECORDS =

88 TRAINING + 44 TESTING RECORDS → 158 TRAINING + 40 TESTING RECORDS →
W/ 3-FOLD = 44 × 3 = 132 RECORDS W/ 3-FOLD = 40 × 3 = 120 RECORDS

Fig. 10: ROC curves for three-fold cross-validation in a. Multinomial regression in Office Tasks 2019. b. Random forest in
Office Tasks 2019. c. Logistic regression in CASE. d. Random forest in CASE. Solid lines represent the 3-fold mean curves
and shaded regions the standard deviation.
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4.3 Random Forest Analysis
4.3.1 Random Forest on Office Tasks 2019
To appreciate how the proposed framework of breathing
features performs in the context of different ML algorithms,
we also carry out classification of treatments in the Office
Tasks 2019 dataset using random forest. Unlike decision
tress, random forest runs a reduced risk of overfitting and
for this reason is a popular ML algorithm.

To assess robustness, we operationalize classification via
3-fold cross-validation. Figure 10b shows the 3-fold ROCs
for treatments PR, LT, and ST. Random forest remains robust
in all three treatments. Comparing Fig. 10b with Fig. 10a, we
observe that the random forest’s performance is on par with
the regression performance in treatments PR and ST, while
it exceeds regression in treatment LT. In more detail, for PR,
ST, and LT, the random forest 3-fold AUC distributions are
0.93± 0.03, 0.85± 0.07, and 0.82± 0.07, respectively.

The summative confusion matrices and statistics of key
classification metrics are reported in Table 3b and 3c, re-
spectively. The confusion matrices indicate that in terms of
true positives vs false negatives random forest classification
performs very well in all three tasks. In terms of true
negatives vs. false positives, however, the performance is
superior in the PR and ST tasks; the LT task performs the
worst. This performance ranking is also reflected in the
accuracy, recall, and F1 scores. For instance, accuracy for
PR stands at 0.89± 0.06, for ST at 0.86± 0.06, and for LT at
0.77± 0.06.

4.3.2 Random Forest on CASE
Figure 10d shows the 3-fold ROC for CASE, when we use
random forest. The performance appears to improve over
that of regression for the same dataset (Fig. 10c) - AUC =
0.85±0.06 vs. 0.71±0.04. The summative confusion matrix
and statistics of key classification metrics are reported in
Table 3b and 3c, respectively. The confusion matrix indicates
that in terms of true positives vs false negatives random
forest classification performs very well. In terms of true
negatives vs. false positives, the performance is relatively
lower. This performance signature is reflected in the accu-
racy, recall, and F1 scores. Characteristically, recall stands at
0.85± 0.06 while accuracy is 0.80± 0.05.

4.4 Feature Importance Across Datasets-Algorithms
The cross-comparison of feature importance among the
datasets and algorithms used in this research offers valu-
able insights into the operationalization of our feature set.
Figure 11 shows the feature importance graphs regarding
classification via regression and random forest in the Office
Tasks 2019 and CASE datasets. In regression classification,
the feature importance is determined by the coefficients of
the applicable regression model, while in random forest
classification the feature importance is determined by the
mean decrease in impurity.

Figures 11b - 11d show features that account for more
than 5% of reduction in impurity in random forest classifica-
tion for the Office Tasks 2019 and CASE datasets, respectively.
In Office Tasks 2019, in particular, there are four features
that exceed 10% contribution in random forest classification.
These features include both breathing depth (BVC NORM)

and speed (WL NORM, WL AVG, BR AVG) features in
normalized and non-normalized form. There is also an RTQ
feature that immediately follows them. This diverse set of
important features covers all three categories of breathing
features that constitute the essence of our research design,
as laid out in Table 1. Hence, the said results affirm the
goodness of our proposition for depth, speed, and RTQ
breathing features to be used in naturalistic knowledge
work studies with speech sessions. Furthermore, in the Of-
fice Tasks 2019 the important features in random forest (Fig.
11b) largely match the important features in regression (Fig.
11a), establishing the relative insensitivity of our feature set
to different ML algorithms, when used in applications for
which was designed for.

Fig. 11: Feature importance graphs for: a. Regression clas-
sification in the Office Tasks 2019 dataset. b. Random forest
classification in the Office Tasks 2019 dataset. c. Regression
classification in the CASE dataset. d. Random forest classifi-
cation in the CASE dataset.

In CASE, there is only one feature that exceeds 10%
contribution in random forest classification. This is the
breathing depth feature WA NORM (Fig. 11d), which cap-
tures fear responses during scary movie watching, as we
explained earlier in the text. Some speed and RTQ fea-
tures follow, but they are all below 10%. The regression
feature importance graph in Fig. 11c agrees with the random
forest graph in Fig. 11d regarding the importance of the
WA NORM feature. The regression graph largely ignores
all the other low scoring features that show in the random
forest graph. Hence, in the CASE dataset our proposed
feature set, as laid out in Table 1, is underutilized. This
is simply because the dataset is void of relevant content,
such as various mental tasks in the presence and absence of
speech. Nevertheless, the one depth feature that is relevant
here, captures the one-dimensional emotional content of the
dataset (i.e., fear), helping the algorithms to deliver decent
classification performance. The random forest method man-
ages to scrape information from a few other features, which
likely explains its relatively higher performance.

5 DISCUSSION

The research presented in this paper aims at establishing
a new analytical framework for breathing signals, which
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can live up to the challenges of naturalistic affective stud-
ies for sitting subjects. Such studies are reflective of the
knowledge economy era, where subjects engage in mental
activities either sustained or time-pressured, interspersed
with speech delivery during video calls. These types of
activity are likely to cause hyperarousal and thus are of in-
terest to affective investigations. Existing breathing analysis
methods have difficulty dealing comprehensively with such
activities, either because the said methods confound speech
effects or because can capture certain behavioral effects (e.g.,
emotional) but not others (e.g., mental).

The key characteristic of the framework we introduce
is a comprehensive set of psychophysiologically informed
breathing features. Specifically, the framework is capable of
accounting for the basal metabolic, involuntary behavioral,
and volitional behavioral components of breathing in in-
dividuals. The method attains this performance thanks to
two provisions: First, it estimates the basal metabolic com-
ponent of breathing from a resting baseline session, which
the method considers to be integral to affective computing
studies. By removing the basal component, the method can
focus more effectively on the involuntary and voluntary
behavioral components of breathing. Second, the method
uses a multitude of features that capture breathing charac-
teristics laden with behavioral information. These features
include breathing rate (i.e., speed), which tracks involuntary
behavioral effects of emotional nature. The features also
include breathing volume, which tracks increased metabolic
demands due to mental stress, or the instantaneous effect of
sighing associated with fear responses. Finally, the features
also include the RTQ ratio, which captures shifts between
the inspiratory and expiratory phases of breathing, indicat-
ing the presence or absence of speech - a volitional behavior
that interferes with breathing.

By testing our breathing feature set on the Office Tasks
2019 dataset, we found that it can reliably classify hyper-
arousal instigated by mental stressor vs. mixed mental-
emotional stressor vs. mixed mental-social stressor in the
presence of speech. The first class is an example of an
involuntary side effect caused by an internal stimulus (i.e.,
mental effort). The second class is an example of an in-
voluntary side effect caused by a combination of internal
(i.e., mental effort) and external stimulus (i.e., strict time
limit). The third class is an example of mixed involuntary-
voluntary effects. The involuntary effect stems from the
socio-cognitive stressor of articulating a public speech on
the fly, while the voluntary effect stems from delivering
this speech, and thus volitionally altering one’s breathing
patterns.

There are two issues that merit further discussion. First,
what happens if the affective study does not feature a
resting baseline session. Second, can this framework being
extended beyond the realm of naturalistic knowledge work
studies? With respect to the first question, if the study is
a controlled experiment, then the absence of a baseline
session is a problem, because it will render impossible the
computation of normalized features, which constitute one
third of our set (Table 1). If the study is in the wild, how-
ever, featuring lengthy daily observations, then the basal
metabolic component of breathing can be estimated with
careful analysis. For instance, one could look for consistent

low breathing values on Sunday mornings, when most
people tend to relax, as a reasonable approximation to a
basal metabolic state.

To start addressing the second question, we tested our
feature set on CASE - a second dataset derived from a
stylized experiment, where participants are exposed to short
scary and non-scary movie clips. The dataset has few of
the characteristics our feature set has been designed for.
For instance, participants are not speaking in CASE, while
the experimental sessions are short and do not involve
naturalistic knowledge work tasks. Despite all these, our
feature set attains respectable performance in classifying
scary from non-scary arousal responses. In doing so, our
feature set demonstrates its capacity for application be-
yond our original design aims. Moreover, the feature set’s
performance appears to be independent of the choice of
classification algorithms in the Office Tasks 2019 dataset,
where both regression and random forest perform equally
well. For the CASE dataset performance remains on solid
grounds across classification methods but the feature set at-
tains better performance through random forest rather than
regression. In conclusion, the proposed breathing feature set
demonstrates:

1) Excellent stand-alone classification performance of
affect when used within its designed application
envelope, with naturalistic tasks featuring mental
and emotional stressors plus speech. Full feature
utilization renders classification performance inde-
pendent of algorithmic choice; cross-validated AUC
mostly in the 90s for PR and ST in Office Tasks 2019.

2) Very good stand-alone classification performance
of affect when used in naturalistic tasks that fea-
ture strong mental stressors without speech; cross-
validated AUC in the 80s and 70s for LT in Office
Tasks 2019.

3) Solid stand-alone classification performance, even
when used outside its designed application enve-
lope, in contrived experimental tasks with moder-
ate stressors and no speech. Random forest better
utilizes sparse features in this instance, gaining a
performance edge; cross-validated AUC in the 70s
through regression and in the 80s through random
forest in CASE.
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